232. ${ }^{1} \mathrm{H}$-NMR Spectra of Cyclohexa-1,4-dienes and Cyclohexenes Annellated to Bicyclo[2.2.1]hept-2-enes. The Inter-Ring Homoallylic H,H Coupling Constants as Stereochemical Probes

by Cyril Mahaim ${ }^{1}$), Pierre-Alain Carrupt, and Pierre Vogel*
Institut de chimie organique de l'Université, rue de la Barre 2, CH-1005 Lausanne

Dedicated to Prof. Dr. Tino Gäumann on the occasion of his 60th birthday

Abstract

The $360-\mathrm{MHz}{ }^{-}{ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of cyclohexa-1,4-dienes and cyclohexenes annellated to bicyclo[2.2.1]hept-2enes and 7-oxabicyclo[2.2.1]hept-2-enes show inter-ring homoallylic coupling constants between the bridgehead protons of the bicyclo[2.2.1]heptenes and the exo-protons of the allylic methylene groups $(0.8 \pm 0.15 \mathrm{~Hz}$ for bicyclo[2.2.1]hept-2-enes; $0.8-1.4 \mathrm{~Hz}$ for 7 -oxabicyclo[2.2.1]hept-2-enes). Contrastingly, the corresponding coupling between the bridgehead protons and the endo-protons is absent. The observed values are compared with those calculated by the INDO and CNDO/2 methods and discussed in the light of the bicyclo[2.2.1]hept-2-ene bond π-anisotropy. Vicinal as well as intra-ring homoallylic coupling constants are consistent with a small puckering of the cyclohexa-1,4-diene rings toward the endo-face. The allylic exo-methylene protons are more deshielded than the endo-protons independent of the nature of the substituents, the nature of the bridges, and the degree of unsaturation of the annellated systems. These results constitute a probe for the configuration of cyclohexa-1,4-dienes and cyclohexenes annellated to these bicyclic skeletons.

Introduction. - In the course of our studies on the synthesis of anthracyclines [1-4] based on the Diels-Alder additions of exocyclic s-cis-butadiene moieties grafted onto 7-oxabicyclo[2.2.1]heptane derivatives 1, we observed 'H-NMR spectra of the corresponding adducts 2 with measurable homoallylic ${ }^{5} J(\mathrm{H}, \mathrm{H})$ coupling constants of $c a .1 \mathrm{~Hz}$ between the bridgehead protons of the 7-oxabicyclo[2.2.1]heptene systems and the allylic protons of the annellated cyclohexene moieties [3-5]. This was true for the exo-protons only; no such long-range coupling could be detected for the endo-allylic protons. In order to determine whether this feature could be taken as a probe for the configuration of the Diels-Alder adducts 2, we prepared a series of cyclohexenes and cyclohexa-1,4-dienes annellated to various bicyclo[2.2.1]hept-2-ene and 7-oxabicyclo[2.2.1]hept-2-ene skeletons. We report now on their high-field (360 MHz) ${ }^{1} \mathrm{H}-\mathrm{NMR}$ properties and show that the inter-ring homoallylic ${ }^{5} J(H, H)$ coupling constants indeed constitute the probe we were looking for.

[^0]Scheme 1

$\begin{array}{ll}\mathrm{Y}=\mathrm{CH}_{2}: 5 & \mathrm{R}=\mathrm{COCH}_{3} \\ \mathrm{Y}=\text { exo-Epoxymethano: }: & \mathrm{R}=\mathrm{COOCH}_{3} \\ \mathrm{R}=\mathrm{COCH}_{3}\end{array}$
9
11
$\mathrm{R}=\mathrm{COOCH}_{3}$
12
Results. - The dienes $\mathbf{3}$ [6] and 4 [7], the tetraene 5 [8], and the epoxy-triene $\mathbf{6}$ added to methyl propynoate and 3-butyn-2-one and gave the corresponding cyclohexa-1,4-dienes 7-12 (Scheme 1) whose structure was ascertained by combustion analysis and their spectral data. The new epoxy-triene 6 [9] was obtained as major product in the monoepoxidation of tetraene 5 in the presence of 1 mol-equiv. of meta-chloroperbenzoic acid ($m-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CO}_{3} \mathrm{H}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The Diels-Alder additions of $\mathbf{6}$ were regioselective $\mathbf{1 1}$ and $\mathbf{1 2}$ being the major adducts with butynone and methyl propynoate, respectively [9]. The exo-configuration of the epoxides in 6,11 , and 12 was given by the ${ }^{1} \mathrm{H}$-coupled ${ }^{13} \mathrm{C}$-NMR spectra. No vicinal ${ }^{3} J(\mathbf{C}, \mathrm{H})$ coupling constant could be detected between the exo-epoxy C -atom (exo refers to the O -atom) and the adjacent bridgehead H -atom whereas, in the endo-isomers, a ${ }^{3} J(\mathrm{C}, \mathrm{H})$ of $3-5 \mathrm{~Hz}$ is generally observed. This is typical of bicyclo[2.2.1]heptane systems [10] and was confirmed by the ${ }^{13} \mathrm{C}$-NMR spectra of epoxides 14, $18\left({ }^{3} J(H-\mathrm{C}(4), C-\mathrm{C}(5))=4-5 \mathrm{~Hz}\right)$ and $15,19\left({ }^{3} J(H-\mathrm{C}(4), C-\mathrm{C}(5))<1 \mathrm{~Hz}\right.$; Scheme 2). Compounds 18 and 19 were obtained as a 1:1.5 mixture on treatment of diene 17 [5] with 1 mol-equiv. of $m-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CO}_{3} \mathrm{H}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(20^{\circ} \mathrm{C}\right)$. Under the same conditions, triene 13 [11] gave a 1.3:1:1 mixture of the monoepoxides 14/15/16 (see Exper. Part).

All ${ }^{1} \mathrm{H}-\mathrm{NMR}$ signals of the $360-\mathrm{MHz}$ spectra of $\mathbf{7 - 1 2}$ could be assigned by double-irradiation experiments. The distinction between Hexo vs. Hendo at $\mathrm{C}(3)$ and $\mathrm{C}(6)$ in 7 and 8 was confirmed by NOE's measured for Hendo $-\mathrm{C}(3)$ and Hendo-C(6) and not for

Scheme 2

Hexo- $\mathrm{C}(3)$ and Hexo $-\mathrm{C}(6)$ while irradiating Hendo $-\mathrm{C}(9)$ and Hendo $-\mathrm{C}(10)$. The signs of the coupling constants in $\mathbf{1 1}$ were assigned by computer simulation. We assume the same signs for $J(\mathrm{H}, \mathrm{H})$ in $7-10$ and 12 as the ${ }^{~} \mathrm{H}-\mathrm{NMR}$ patterns of $\mathrm{H}-\mathrm{C}(3), \mathrm{H}-\mathrm{C}(5)$, and $\mathrm{H}-\mathrm{C}(6)$ were all very similar in 7-12. They were consistent with observed geminal [12], vicinal [12][13], allylic [12-14], and homoallylic [12] coupling constants. The sign of ${ }^{5} J(\mathrm{H}, \mathrm{H})$ between the bridgehead and allylic methylene H -atoms could not be determined. We assume it to be positive as negative ${ }^{5} J(\mathrm{H}, \mathrm{H})$ are usually observed only when there are two different paths for the homoallylic coupling [14][15] (through bond or/and through space [16]), which is not the situation here. The homoallylic coupling constants and the δ_{H} of $\mathrm{H}-\mathrm{C}(3)$ and $\mathrm{H}-\mathrm{C}(6)$ of $\mathbf{7 - 1 2}$ are reported in Table 1. Hexo- $\mathrm{C}(3)$ and $\mathrm{Hexo}-\mathrm{C}(6)$ are more deshielded than Hendo $-\mathrm{C}(3)$ and Hendo $-\mathrm{C}(6)$, the difference in δ_{H} being about the same for bicyclo[2.2.1]heptene and 7-oxabicyclo[2.2.1]heptene derivatives and independent of the nature of the substituents at $C(4), C(9)$, and $C(10)$.

The optimum structure of cyclohexa-1,4-diene is planar [17], although substitution can induce puckering of the ring [18]. In 7-12, the vicinal ${ }^{3} J(\mathrm{H}-\mathrm{C}(5), \mathrm{H}-\mathrm{C}(6))$ varied between $3.2-3.4 \mathrm{~Hz}$ for Hendo-C(6) and between $3.6-3.8 \mathrm{~Hz}$ for Hexo-C(6). Following Garbisch's empirical correlation [19], one estimates dihedral angles of $63-67^{\circ}$ between the Hendo $-\mathrm{C}(6)$ and $\mathrm{H}-\mathrm{C}(5)$ and of $56-60^{\circ}$ between the $\mathrm{Hexo}-\mathrm{C}(6)$ and $\mathrm{H}-\mathrm{C}(5)$ bonds, thus suggesting a small puckering of $3-10^{\circ}$ of the $\mathrm{C}(3)$ and $\mathrm{C}(6)$ methylene C -atoms toward the endo-face. The ${ }^{5} J(\mathrm{H}-\mathrm{C}(3), \mathrm{H}-\mathrm{C}(6))$ can be correlated with the cyclohexadiene conformation [17][18a][20]. The ratios ${ }^{5} J(H e n d o-C(3)$, Hendo- $\mathrm{C}(6))$ / ${ }^{5} J(\mathrm{Hendo}-\mathrm{C}(3)$, Hexo $-\mathrm{C}(6)) \quad$ and $\left.\quad{ }^{5} J(\mathrm{Hendo}-\mathrm{C}(3)$, Hendo $-\mathrm{C}(6))\right|^{5} J(\mathrm{Hexo}-\mathrm{C}(3)$, Hendo- $\mathrm{C}(6)$) varied between 1.18 and 1.28 in $\mathbf{7 - 1 2}$, whereas the ratios ${ }^{5} J($ Hexo $-\mathrm{C}(3)$, Hexo $-\mathrm{C}(6)) / /^{5} J(\mathrm{Hexo}-\mathrm{C}(3), \mathrm{Hendo}-\mathrm{C}(6)) \quad$ and ${ }^{5} J(\mathrm{Hexo}-\mathrm{C}(3)$, Hexo- $\mathrm{C}(6)) /{ }^{5} J($ Hendo $-\mathrm{C}(3)$, Hexo $-\mathrm{C}(6))$ varied between 1.02 and 1.15 . This is consistent also with a small ring-puckering angle of 5-10 toward the endo-face of 7-12.

Fig. I
Very satisfactory correlations have been obtained between experimental and calculated ${ }^{5} J(\mathrm{H}, \mathrm{H})$ [13][21]. The geometrical dependence of π-contribution to the homoallylic coupling constant is adequately described by ${ }^{5} J(\mathrm{H}, \mathrm{H})=4.99 \cdot \sin ^{2} \phi \sin ^{2} \phi^{\prime}[13 \mathrm{a}]$ where ϕ and ϕ^{\prime} denote the dihedral angles which are depicted in Fig. I. In norbornenes, ϕ is evaluated to $17 \pm 3^{\circ}$ [22][23], in 7-oxanorbornenes to $23 \pm 3^{\circ}[23]$. With $\phi^{\prime}=130 \pm 5^{\circ}$ and $\phi^{\prime}=240 \pm 5^{\circ}$ for Hexo and Hendo, respectively, at $\mathrm{C}(3)$ and $\mathrm{C}(6)$ one calculates ${ }^{5} J(\mathrm{H}-\mathrm{C}(1), \mathrm{Hexo}-\mathrm{C}(6))={ }^{5} J(\mathrm{H}-\mathrm{C}(8), \mathrm{Hexo}-\mathrm{C}(3))=0.15-0.4 \mathrm{~Hz}$ and ${ }^{5} J(\mathrm{H}-\mathrm{C}(1)$, Hendo- $\mathrm{C}(6))={ }^{5} J(\mathrm{H}-\mathrm{C}(8)$, Hendo $-\mathrm{C}(3))=0.2-0.5 \mathrm{~Hz}$ for 7 and $0.3-0.65 \mathrm{~Hz}$ and $0.4-$ 0.8 Hz for 8-12. This contrasts with the experimental values reported in Table 1. No inter-ring ${ }^{5} J(\mathrm{H}, \mathrm{H})(<0.2 \mathrm{~Hz})$ could be detected for Hendo- $\mathrm{C}(3)$ and Hendo-C(6), whereas at ${ }^{5} J(\mathrm{H}, \mathrm{H})=0.8 \mathrm{~Hz}$ in 7 and $1.1-1.4 \mathrm{~Hz}$ in $\mathbf{8} \mathbf{- 1 2}$ was measured for $\mathrm{Hexo}-\mathrm{C}(3)$
and Hexo-C(6). CNDO/2 and INDO calculations on model molecules (see below, Table 3 and Fig. 3) predict larger inter-ring homoallylic coupling constants than those observed with 7-12; nevertheless, the calculated ${ }^{5} J(\mathrm{H}, \mathrm{H})$ are larger for $\mathrm{Hexo}-\mathrm{C}(3)$ and $\mathrm{Hexo}-\mathrm{C}(6)$ than for the corresponding endo-protons, in agreement with our findings. This suggests that the σ-framework contributes significantly in differentiating the longrange coupling constants reported here.

Sheme 3

Similar observations were also made with cyclohexenes 22-25 annellated to bicy-clo[2.2.1]hept-2-enes (obtained by tetracyanoethylene (TCNE) additions to the dienes $\mathbf{2 0}$ and 21) ${ }^{2}$) and 7-oxabicyclo[2.2.1]heptenes 26-34 (Scheme 3) whose structure was given by combustion analysis, mode of formation, and spectral data. Adducts 26-30 and their $360-\mathrm{MHz}-{ }^{-1} \mathrm{H}-\mathrm{NMR}$ characteristics have already been described in detail [5]. Irradiation of the $\mathrm{Hendo}-\mathrm{C}(9)$, Hendo $-\mathrm{C}(10)$ signals led to a NOE on the Hendo- $\mathrm{C}(3)$ and Hendo-C(6) signals of 22-25 [5][17]. The ${ }^{4} J(\mathrm{H}, \mathrm{H})$ coupling constants between $\mathrm{H}-\mathrm{C}(1), \mathrm{H}-\mathrm{C}(8)$ and $\mathrm{Hexo}-\mathrm{C}(6), \mathrm{H}$ exo - $\mathrm{C}(3)$ were systematically larger $(0.3-0.5 \mathrm{~Hz})$ than those between $\mathrm{H}-\mathrm{C}(1), \mathrm{H}-\mathrm{C}(8)$ and $\mathrm{Hendo}-\mathrm{C}(6)$, Hendo $-\mathrm{C}(3)(<0.2 \mathrm{~Hz})$, respectively.

$26 \mathrm{X}=$ endo -Cl
$27 \mathrm{X}=$ exo -Cl
$28 \mathrm{X}=$ endo -MeO
$31 \mathrm{X}=\mathrm{H}$

$29 \mathrm{X}=$ endo -MeO
$30 \mathrm{X}=$ exo- MeO
$32 \mathrm{X}=\mathrm{H}$

$33 \mathrm{R}^{\prime}=\mathrm{H}$
$34 \mathrm{R}^{\prime}=\mathrm{CH}_{2} \mathrm{Cl}$

As for 7-12, the δ_{H} of $\mathrm{Hexo}-\mathrm{C}(3)$ and $\mathrm{Hexo}-\mathrm{C}(6)$ was slightly larger than that of the corresponding Hendo's ($\Delta \delta_{\mathrm{H}}=0.14 \mathrm{ppm}$ in $\mathbf{2 2}$ and $\mathbf{2 4}, 0.37 \mathrm{ppm}$ in $\mathbf{2 3}, 0.29 \mathrm{ppm}$ in $\mathbf{2 5}$, and 0.44 ppm in 30 [5] for the $2 \mathrm{H}-\mathrm{C}(6)$; see Table 1). Half chairs are expected for the cyclohexene-tetracarbonitriles $\mathbf{2 2} \mathbf{- 3 2}$ with the substituent at $\mathrm{C}(3)$ in a pseudoequatorial position. This was confirmed by the analysis of the intra-ring ${ }^{5} J(\mathrm{H}, \mathrm{H})[5][25]$ and by comparison with the observed and simulated ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of 3-chloro-cyclohex-4-ene-1,1,2,2-tetracarbonitrile (see Table 2, Fig. 2). As for the cyclohexa-1,4-dienes 7-12, the inter-ring $5(\mathrm{H}, \mathrm{H})$ measured between $\mathrm{Hexo}-\mathrm{C}(3)$ and $\mathrm{H}-\mathrm{C}(8)$ in 22 and 24 $(0.8 \pm 0.15 \mathrm{~Hz})$ and 26 and $28(1.1-1.2 \mathrm{~Hz})$ as well as between $\mathrm{H}-\mathrm{C}(1)$ and $\mathrm{Hexo}-\mathrm{C}(6)$ in $22-25(0.8 \pm 0.15 \mathrm{~Hz})$ and $26-30(1.1-1.4 \mathrm{~Hz})$ were significantly larger than

[^1]Table 1. ${ }^{1} H-N M R$ Spectra (360 MHz) of Cyclohexa-1,4-dienes 7-12 and Cyclohexenes 22-27. Coupling constants $>0.2 \mathrm{~Hz}$. Chemical shifts [ppm, internal TMS $\left.\delta_{\mathrm{H}}=0.0 \mathrm{ppm}\right]$ for $\mathrm{H}-\mathrm{C}(3)$ and $\left.\mathrm{H}-\mathrm{C}(6)^{\mathrm{a}}\right)$.

Compound	$\left.7^{b}\right)^{c}$)	$\left.8^{\text {b }}\right)^{\text {c }}$)	$9^{\text {c }}$)	$10^{\text {c }}$)	11)	12 ${ }^{\text {c }}$)	$22^{\text {d }}$)	$23^{\text {d }}$)	$24^{\text {d }}$)	$25^{\text {d }}$)	26)	$27^{\text {e }}$)
${ }^{2} J$ (Hendo-C(3), Нexo-C(3))	-22.0	-22.2	-22.5	-22.4	-22.3	-22.5	-	-	-	-	-	-
${ }^{2} J(\mathrm{Hendo}-\mathrm{C}(6), \mathrm{Hexo}-\mathrm{C}(6))$	-24.0	-24.0	-23.8	-23.4	-23.7	-23.8	-18.4	-18.4	-18.4	-18.6	-18.9	-18.9
${ }^{3} J(\mathrm{H}-\mathrm{C}(5)$, Hexo-C(6))	3.6	3.8	3.8	3.6	3.8	3.7	-	-	-	-.	-	-
${ }^{3} J(\mathrm{H}-\mathrm{C}(5)$, Hendo- $\mathrm{C}(6))$	3.2	3.6	3.4	3.4	3.4	3.4	-	-	-	-	-	-
${ }^{4} J(\mathrm{H}-\mathrm{C}(1), \mathrm{Hexo}-\mathrm{C}(3))$	0.3	0.3	0.4	0.4	0.4	0.3	0.3	--	0.3	-	0.4	-
${ }^{4} J$ (Hendo - $\mathrm{C}(3), \mathrm{H}-\mathrm{C}(5)$	-2.0	-1.8	-1.8	-2.0	-1.8	-1.7	-	-	-	-	-	
${ }^{4} \mathrm{~J}(\mathrm{H}$ exo - $\mathrm{C}(3), \mathrm{H}-\mathrm{C}(5))$	-1.8	-1.6	-1.7	-1.8	-1.6	-1.5	-		-		-	
${ }^{4} \mathrm{~J}(\mathrm{Hexo}-\mathrm{C}(6), \mathrm{H}-\mathrm{C}(8))$	0.3	0.3	0.3	0.3	0.5	0.4	0.3	0.3	0.3	0.3	0.5	0.5
${ }^{5} J(\mathrm{H}-\mathrm{C}(1), \mathrm{Hendo}-\mathrm{C}(6))$	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
${ }^{5} J(\mathrm{H}-\mathrm{C}(1)$, Hexo - $\mathrm{C}(6))$	0.8	1.3	1.1	1.1	1.4	1.2	0.8	0.8	0.8	0.8	1.2	1.1
${ }^{5} J(\mathrm{Hendo}-\mathrm{C}(3), \mathrm{H}-\mathrm{C}(8))$	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	-	<0.2	-	<0.2	-	<0.2
${ }^{5} J(\mathrm{Hexo}-\mathrm{C}(3), \mathrm{H}-\mathrm{C}(8))$	0.8	1.4	1.1	1.1	1.4	1.3	0.8	-	0.8	--	1.1	-
${ }^{5} J($ Hendo-C(3), Hendo-C(6))	10.2	9.8	9.5	9.8	9.4	9.8	--	1.6	-	1.6	-	1.8
${ }^{5} J(\mathrm{Hendo}-\mathrm{C}(3), \mathrm{Hexo}-\mathrm{C}(6))$	8.0	8.0	7.8	8.0	7.8	7.8	-	3.4	-	3.0	-	3.7
${ }^{5}$ J(Hexo-C(3), Hendo-C(6))	8.3	8.2	8.0	8.2	7.9	8.0	3.4	-	3.0	-	3.7	-
${ }^{5} J($ Hexo-C(3), Hexo-C(6))	8.5	8.4	8.9	9.2	9.0	8.5	2.2	-	2.2	-	2.5	-
δ (Hendo- $\mathrm{C}(3)$	2.54	2.66	2.96	2.98	2.82	2.85	-	5.11	-	4.34	-	5.14
$\delta($ Hexo-C(3))	2.75	3.04	3.32	3.29	3.22	3.20	5.34	--	4.53	-	5.42	-
$\delta($ Hendo - $\mathrm{C}(6)$)	2.19	2.21	2.51	2.52	2.50	2.46	3.16	3.06	3.22	3.15	3.26	3.25
$\delta(\mathrm{Hexo}-\mathrm{C}(6))$	2.37	2.58	2.78	2.79	2.75	2.70	3.30	3.43	3.36	3.44	3.54	3.58

${ }^{\text {a }}$) For further ${ }^{1} \mathrm{H}-\mathrm{NMR}$ data, see Exper. Part and [5].
$\left.{ }^{\text {b }}\right){ }^{5} J($ Hexo- $\mathrm{C}(6)$, Hendo $-\mathrm{C}(9))=0.3 \mathrm{~Hz}$ in 7 and 0.5 Hz in $8 ;{ }^{5} J(\mathrm{Hexo}-\mathrm{C}(3)$, Hendo $-\mathrm{C}(10))=0.4 \mathrm{~Hz}$ in 7 and 8; ${ }^{5} J($ Hendo $-\mathrm{C}(3), \mathrm{Hexo}-\mathrm{C}(10))=0.4 \mathrm{~Hz}$ in 7 and 0.3 Hz in 8 .
$\left.{ }^{c}\right) \quad$ In $\mathrm{C}_{6} \mathrm{D}_{6}$.
${ }^{d}$) $\operatorname{In} \mathrm{CDCl}_{3}$
${ }^{\text {c }}$ In $\mathrm{CD}_{3} \mathrm{COCD}_{3}$.

(a)

Fig. 2. (a) Experimental spectrum and (b) simulated (LAOCOONIV) spectrum of 3-chlorocyclohex-4-ene-1,1,2,2tetracarbonitrile. No line fitting was required: δ_{H} and $J(\mathrm{H}, \mathrm{H})$ were read directly from the experimental spectrum. The simulation was made to confirm the signs of $J(\mathrm{H}, \mathrm{H})$.

Table 2. ${ }^{1} \mathrm{H}$-NMR Spectrum ($360 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 3-Chlorocyclohex-4-ene-1,1,2,2-tetracarbonitrile

${ }^{5} J(\mathrm{H}-\mathrm{C}(1)$, Hendo $-\mathrm{C}(6))(<0.2 \mathrm{~Hz})$ for 22, 24, 26, 28, and 29. With 31-34, for which only partial analysis of the $360-\mathrm{MHz-}{ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra was possible, we recorded similar inter-ring ${ }^{5} J(\mathrm{H}, \mathrm{H})$'s: ${ }^{5} J(\mathrm{H}-\mathrm{C}(1)$, Hexo- $\mathrm{C}(6))={ }^{5} J(\mathrm{H}-\mathrm{C}(8)$, Hexo- $\mathrm{C}(3))=0.8-1.0 \mathrm{~Hz}$ and ${ }^{5} J(\mathrm{H}-\mathrm{C}(1)$, Hendo $-\mathrm{C}(6))={ }^{5} J(\mathrm{H}-\mathrm{C}(8)$, Hendo $-\mathrm{C}(3))<0.2 \mathrm{~Hz}$.

Interestingly, the intra-ring ${ }^{5} J(\mathrm{Hexo}-\mathrm{C}(3)$, Нexo $-\mathrm{C}(6))(2.2 \mathrm{~Hz}$ in 22 and $24 ; 2.4-2.5$ Hz in 26, 28, and 29) between a pseudoequatorial and a pseudoaxial proton was systematically larger than the corresponding ${ }^{5} J(\mathrm{Hendo}-\mathrm{C}(3)$, Hendo $-\mathrm{C}(6))(1.6 \mathrm{~Hz}$ in 23 and $25 ; 1.8 \mathrm{~Hz}$ in $27 ; 1.6 \mathrm{~Hz}$ in $\mathbf{3 0}$). However, the trans-coupling constants ${ }^{5} J(\mathrm{H}$ exo $-\mathrm{C}(3)$, Hendo $-\mathrm{C}(6))$ and ${ }^{5} J(\mathrm{Hendo}-\mathrm{C}(3)$, Hexo $-\mathrm{C}(6))$, $(3.4 \mathrm{~Hz}$ in 22,$23 ; 3.0 \mathrm{~Hz}$ in 24,$25 ; 3.7 \mathrm{~Hz}$ in $\mathbf{2 6}, 27 ; 3.1 \mathrm{~Hz}$ in $\mathbf{2 9}, \mathbf{3 0}$) had similar values.

Discussion. - The Barfield's relationship used above to evaluate the inter-ring homoallylic coupling constant ${ }^{5} J(\mathrm{H}, \mathrm{H})$ of our bicyclo[2.2.1]hept-2-ene systems considers only the π-contributions to the long-range coupling constants, and that, for unstrained model molecules. The strain of our polycyclic systems may enhance the σ-skeleton contributions and thus explain the deviations between our observed values of ${ }^{5} J(\mathrm{H}, \mathrm{H})$ and those calculated by the Barfield's relationship. In order to test this hypothesis, we have carried out a number of coupling-constant calculations on the model molecules $35-38$ using INDO and CNDO/2 wave functions [26] (see Table 3). The geometries used in these calculations were minimized geometries as obtained by the MNDO technique [27]. In the cases of the cyclohexa-1,4-dienes 35 and 36 , complete geometry minimization led to planar cyclohexadiene moieties annellated to planar bicyclo[2.2.1]hept-2-ene systems. With the cyclohexenes 37 and 38, the MNDO-minimized geometries gave, as expected, half-chair conformations, also with a planar endocyclic double bond. X-ray crystallographic data [22-24] as well as ab-initio STO 3G MO calculations [28] suggested non-planar double bonds for the bicyclo[2.2.1]hept-2-ene systems. We thus considered the possible effect of this π-anisotropy on the inter-ring ${ }^{5} J(\mathrm{H}, \mathrm{H})$ coupling constant and repeated the INDO and CNDO/2 calculations for geometries of 35-38 with a non-planar double bond at $\mathrm{C}(2), \mathrm{C}(7)$, in which the alkyl substituent were bent towards the endo-face by 15 degrees (angle α; all other geometry parameters were optimized by the MNDO technique). We completed our calculations by evaluating the inter-ring homoallylic coupling constants ${ }^{5} J(\mathrm{H}-\mathrm{C}(1), \mathrm{Hexo}-\mathrm{C}(6))$ for cyclohexa-1,4-diene and cyclohexene moieties blocked in boat conformations, once bent towards the exo-face ($\mathbf{3 5 X}-\mathbf{3 8 X}$), the other time bent towards the endo-face ($\mathbf{3 5 N} \mathbf{N} \mathbf{3 8 N}$). In the case of $\mathbf{3 7}$ and $\mathbf{3 8}$, these two conformations corresponded to energy wells (the mirror plane of symmetry was imposed in the MNDO calculations). In order to evaluate the effect of a possible puckering of the cyclohexadiene ring in 35 and 36 (see our NMR data for 7-12), we also calculated the inter-ring ${ }^{5} J(H, H)$ coupling constants for boat conformations $\mathbf{3 5 X}, 36 \mathrm{X}$ and $\mathbf{3 5 N}, \mathbf{3 6 N}$ in

Table 3. Calculated Inter-Ring H,H Homoallylic Coupling Constants [Hz] for the Bridgehead Proton $H-C(1)$ with Hendo- and Hexo-C(6) in 7-Oxatricyclo(6.2.1.0 ${ }^{2,7}$]undeca-2(7),4-diene (35), Tricyclo[6.2.1.0 ${ }^{2,7}$ Jundeca-2(7),4diene (36). 7-Oxatricyclo[6.2.1.0 $0^{2,7}$ Jundec-2(7)-ene (37), and Tricyclo[6.2.1.0 ${ }^{2,7}$ Jundec-2(7)-ene (38)

	MNDO-Minimized geometries (planar $\pi-\mathrm{C}(2), \mathrm{C}(7)$ double bond)				
	$\Delta H_{f}^{\circ}(\mathrm{MNDO})$	${ }^{5} \boldsymbol{J}(\mathrm{H}, \mathrm{H})$	calc. by INDO	${ }^{5} J(\mathrm{H}, \mathrm{H})$	calc. by CNDO/2
	[$\mathrm{kcal} / \mathrm{mol}$]	Hendo	Hexo	Hendo	Hexo
35	1.9	0.93	2.68	0.55	1.72
36	26.1	0.49	1.69	0.18	1.03
$37^{\text {a }}$)	-26.34	0.97	2.52	0.59	1.63
38 ${ }^{\text {a }}$	1.79	0.44	1.60	0.21	0.99
Unst	nformers (see text)				
35X	0.09	1.49	2.0	0.9	1.28
35N	0.00	0.42	2.85	0.20	1.81
36X	27.95	0.71	1.38	0.32	0.87
36N	27.91	0.30	1.69	0.09	0.99
37X	-24.01	1.5	2.01	0.94	1.31
37N	24.07	0.3	2.87	0.16	1.83
38X	4.08	0.69	1.41	0.34	0.91
38N	4.07	0.25	1.55	0.08	0.94

	With non-plan towards the en	$\mathrm{C}(2), \mathrm{C}(7)$ e by $\alpha=$	bond, the six-m	red ring	
	$\Delta H_{\mathrm{f}}^{\mathrm{o}}$ (MNDO)	${ }^{5} J(\mathrm{H}, \mathrm{H})$	calc. by INDO	${ }^{5} J(\mathrm{H}, \mathrm{H})$	calc. by CNDO/2
	[$\mathrm{kcal} / \mathrm{mol}$]	Hendo	Hexo	Hendo	Hexo
35	0.85	0.93	3.14	0.57	2.07
36	29.1	0.45	2.15	0.23	1.42
$37^{\text {a }}$)	-23.46	0.91	2.93	0.62	2.01
$38^{\text {a }}$)	4.88	0.46	2.08	0.39	1.35
Unst	nformers (see text)				
35X	2.57	1.75	2.60	1.14	1.71
35N	2.67	0.31	3.0	0.16	2.04
36X	30.59	0.90	1.84	0.49	1.19
36N	30.83	0.28	2.06	0.10	1.30
37X	-21.45	1.72	2.5	1.17	1.67
37N	-21.0	0.26	3.0	0.10	2.0
38X	6.79	0.92	1.89	0.55	1.24
38N	7.29	0.24	1.89	0.08	1.22

${ }^{\text {a }}$) Average values ${ }^{5} J(\mathrm{H}-\mathrm{C}(1), \mathrm{H}-\mathrm{C}(6))$ and ${ }^{5} J(\mathrm{H}-\mathrm{C}(8), \mathrm{H}-\mathrm{C}(3))$ (equilibrium of half-chairs).
which the cyclohexadiene ring were bent towards the exo- and the endo-face, respectively, by an angle β of 20 degrees. Our calculations are summarized in Table 3.

Our semi-empirical calculations predict a larger inter-ring ${ }^{5} J(\mathrm{H}, \mathrm{H})$ value for the allylic Hexo than Hendo at $\mathrm{C}(3), \mathrm{C}(6)$ of the tricyclo[6.2.1.0 $\left.{ }^{2,7}\right]$ undeca-2(7),4-diene and tricyclo[6.2.1.0.7]undec-2(7)-ene systems and this independently of the conformation of the cyclohexa-1,4-diene and cyclohexene moieties, respectively. As expected from the angular dependence of ${ }^{5} J(\mathrm{H}, \mathrm{H})$ (see Fig. l), puckering of the six-membered ring (boat conformers $\mathbf{3 5 X} \mathbf{- 3 8 X})$ towards the exo-face leads to smaller ${ }^{5} J(\mathrm{H}-\mathrm{C}(1)$, Hexo $-\mathrm{C}(6))$ / ${ }^{5} J(\mathrm{H}-\mathrm{C}(1), \mathrm{Hendo}-\mathrm{C}(6))$ ratio than puckering towards the endo-face (boat conformers

37

$\mathrm{Z}=\mathrm{O}: \quad 35$
$\mathrm{Z}=\mathrm{CH}_{2}:$
$\mathbf{3 6}$
38

38N

36X

36N
$\mathbf{3 5 N}-\mathbf{3 8 N}$, see Table 3). The pyramidalization of the $\mathrm{C}(2), \mathrm{C}(7)$ double bond with the annellated six-membered ring bending towards the endo-face almost always increases the calculated inter-ring homoallylic coupling constants. This increase is larger for ${ }^{5} J(\mathrm{H}-\mathrm{C}(1)$, Hexo $-\mathrm{C}(6))$ than for ${ }^{5} J(\mathrm{H}-\mathrm{C}(1)$, Hendo $-\mathrm{C}(6))$. The smaller values calculated for the bicyclo[2.2.1]hept-2-enes $(\mathbf{3 6}, \mathbf{3 8})$ than for the 7 -oxabicyclo[2.2.1]hept-2-enes $(35,37)$ are consistent with the smaller $\left(\phi=17 \pm 3^{\circ}\right)$ than for the latter $\left(\phi=23 \pm 3^{\circ}\right)$, in agreement with the X-ray data available [22-24] and also the ab-initio STO 3G calculations [28].

To further confirm the conformational dependence of the calculated inter-ring ${ }^{5} J(\mathrm{H}, \mathrm{H})$, we calculated ${ }^{5} J\left(\mathrm{H}-\mathrm{C}(1), \mathrm{H}-\mathrm{CH}_{2}-\mathrm{C}(3)\right)$ in 2,3-dimethyl-5,6-dimethylidene-7-oxabicyclo[2.2.1]hept-2-ene (39 ; MNDO-minimized geometries) as a function of the angle ϕ^{\prime} of rotation of the CH_{3} group at $\mathrm{C}(3)$. Our results are summarized in Fig. 3 for a planar endocyclic double bond at $\mathrm{C}(2), \mathrm{C}(3)$ (as obtained by the MNDO minimization) and for a structure in which the CH_{3} groups are bent towards the endo-face by $\alpha=10$ degrees [22].

Fig. 3. Angular (ϕ^{\prime}) dependance of the calculated (INDO) ${ }^{5} \mathbf{J}\left(\mathrm{H}-\mathrm{C}(1), \mathrm{H}-\mathrm{CH}_{2}-\mathrm{C}(3)\right)$ in 39. ---: for a planar $\pi-\mathrm{C}(2), \mathrm{C}(3)$ double bond (MNDO minimized geometry). ---; for a non-planar $\pi-\mathrm{C}(2), \mathrm{C}(3)$ double bond with the CH_{3} groups bending towards the endo-face by $\alpha=10^{\circ}$.

It is interesting to note that the calculated ${ }^{5} J\left(\mathrm{H}-\mathrm{C}(1), \mathrm{H}-\mathrm{CH}_{2}-\mathrm{C}(3)\right)$ values are always larger for $\mathrm{Hexo}\left(\phi^{\prime}=0-180^{\circ}\right)$ than for Hendo ($\phi^{\prime}=180-360^{\circ}$) of the CH_{3} group. For angle values $\phi^{\prime}=110-135^{\circ}$, corresponding to $\mathrm{Hexo}-\mathrm{C}(3)$ in 11-oxatricyclo[6.2.1. $0^{2.7}$]undec-2(7)-enes, ${ }^{5} J(\mathrm{H}, \mathrm{H})$ is calculated to be $c a .4$ times larger than ${ }^{5} J(\mathrm{H}, \mathrm{H})$ obtained with $\phi^{\prime}=225-250^{\circ}$, corresponding to Hendo-C(3).

Conclusion. - The inter-ring homoallylic coupling constants between the bridgehead protons of the bicyclo[2.2.1]hept-2-enes and 7-oxabicyclo[2.2.1]hept-2-enes and the allylic methylene protons of the annellated cyclohexa-1,4-dienes and cyclohexenes can be used to establish the relative configuration of the latter protons. Applications of this analytical tool are presented in the accompanying paper. An X-ray crystalline structure of an 7-oxabicyclo[2.2.1]hepta-2,5-diene doubly annellated with cyclohexene rings confirms its validity [29].

Acknowledgment is made to Hoffmann-La Roche \& Co. AG. Basel, the Fonds Herbette, Lausanne, and the Swiss National Science Foundation for generous financial support. We are grateful to Prof. J. Lauterwein for help in the measurements of high-fieid ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra and to the referee for very pertinent and useful comments.

Experimental Part

General. See [2]. 'H-NMR spectra: Bruker WH 360 FT spectrometer, at 303 K , Aspect 2000 data system. All spectra were run with 32 K data points over 2500 Hz with acquisition time of $6.5-8 \mathrm{~s}$ and digital resolution of 0.11 Hz . Single detection and phase cycling were used. The Bruker microprogram was used for direct accumulation of NOE difference spectra. All solutions (0.1 to 0.2 m) were degassed on the vacuum line (freeze/thaw cycles) and sealed under vacuum in $5-\mathrm{mm}$ Pyrex tubes. Spectra simulations were performed on standard P.A.N.I.C. software on Aspect 2000 (LAOCOON IV). No line fitting was required. The chemical shifts and apparent coupling constants were read directly from the experimental spectra. The simulations were made to confirm the sign and the values of the coupling constants. Combustion analyses were performed by Dr. I. Beetz, Mikroanalytisches Laboratorium, D 8640 Kronach .

Synthesis of the Cyclohexa-1,4-dienes and Cyclohexenes Annellated to Bicyclo[2.2.1]hept-2-enes. None of the procedures given below has been optimized.

Methyl Tricyclo[6.2.1. $0^{2,7}$]undeca-2(7),4-diene-4-carboxylate (7). See [30].
Methyl 11-Oxatricyclo[6.2.1.0 ${ }^{2,7}$ 7undeca-2(7),4-diene-4-carboxylate (8). A soln. of 2,3-dimethylidene-7-oxatrinorbornane ($4 ; 0.22 \mathrm{~g}, 1 \mathrm{mmol}$; prepared according to [7]) and methyl propynoate ($0.23 \mathrm{~g}, 1.3 \mathrm{mmol}$) in anh. toluene (3 ml) was stirred at 110° for 4 h . After evaporation i.v., the residue was filtered on silica gel (10 g ; AcOEt/petroleum ether 2:5). After evaporation, 8 was recrystallized from $\mathrm{CCl}_{4}(5 \mathrm{ml})$ yielding $0.174 \mathrm{~g}(84 \%)$ of colourless crystals, m.p. 85-86 ${ }^{\circ}$. UV ($\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O} 95: 5$): 219 (2500). IR (KBr): 3000, 2960, 2840, 1720, 1690. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): 6.81(\mathrm{~m}, \mathrm{H}-\mathrm{C}(5)) ; 4.61(\mathrm{~m}, \mathrm{H}-\mathrm{C}(1)) ; 4.54(\mathrm{~m}, \mathrm{H}-\mathrm{C}(8)) ; 3.4\left(\mathrm{~s}, \mathrm{CH}_{3} \mathrm{O}\right) ; 3.05(\mathrm{~m}, \mathrm{Hexo}-\mathrm{C}(3))$; 2.65 (m, Hendo- $\mathrm{C}(3)$); $2.55(\mathrm{~m}, \mathrm{Hendo}-\mathrm{C}(6)) ; 2.21(\mathrm{~m}, \mathrm{Hendo}-\mathrm{C}(6)) ; 1.63(\mathrm{~m}, \mathrm{Hexo}-\mathrm{C}(9)$, Нexo- $\mathrm{C}(10)) ; 0.83$ (m, Hendo- $\mathrm{C}(9)$, Hendo- $\mathrm{C}(10)$); attributions confirmed by NOE measurements between Hendo- $\mathrm{C}(3)$, Hendo $-\mathrm{C}(6)$ and Hendo-C(9), Hendo-C(10). MS (70 eV): 206 (5), 205 (7), 191 (10), 178 (44), 175 (16), 170 (21), 163 (21), 147 (37), 115 (100). Anal. calc. for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{3}$ (206.24): C 69.88, H 5.84; found: C 69.78, H 6.87.
(9,10-Dimethylidene-11-oxatricyclo[6.2.1.0 $0^{2,7}$ Jundeca-2(7),4-dien-4-yl) Methyl Ketone (9). A soln. of 2,3,5,6-tetramethylidene-7-oxatrinorbornane [8] ($5 ; 0.15 \mathrm{~g}, 1.03 \mathrm{mmol}$) and 3-butyn-2-one ($0.2 \mathrm{~g}, 2.4 \mathrm{mmol}$) in anh. toluene $(1 \mathrm{ml})$ was stirred at 90° for 5 h . The mixture was filtered on silica gel ($8 \mathrm{~g}, \mathrm{AcOEt} /$ petroleum ether $1: 1$) and crystallized from AcOEt yielding $0.217 \mathrm{~g}(93 \%)$ of 9 as colourless crystals, m.p. 101-102 ${ }^{\circ}$. $\mathrm{UV}\left(\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O} 95: 5\right)$: $235(3400)$. IR (KBr): 2990, 2890, 2880, 2820, 1780, 1670, 1630, 1430, 1390, 1370, 1280, 1270, 1210, 1150, 1090, 970, $890,840,800,760{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 6.26(\mathrm{~m}, \mathrm{H}-\mathrm{C}(5)) ; 5.29,5.26,5.01,4.96\left(4\right.$ br. $s, \mathrm{CH}_{2}=\mathrm{C}(9), \mathrm{CH}_{2}=\mathrm{C}(10)$); 4.95, $4.94(2 \mathrm{~m}, \mathrm{H}-\mathrm{C}(1), \mathrm{H}-\mathrm{C}(8)) ; 3.32(\mathrm{~m}, \mathrm{Hexo}-\mathrm{C}(3)) ; 2.96(\mathrm{~m}$, Hendo- $\mathrm{C}(3)) ; 2.78(\mathrm{~m}, \mathrm{Hexo}-\mathrm{C}(6)) ; 2.51(\mathrm{~m}$, Hendo-C(6)). MS (70 eV): 214 (13), 199 (6), 185 (56), 171 (38), 162 (22), 161 (18), 144 (69), 141 (53), 128 (100), 91 (24), 85 (18), 77 (20), 65 (29). MS (HR): 214.09729 ($4 M / M=9 \mathrm{ppm} ; \mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{2}$, calc. 214.09934).

Methyl 9,10-Dimethylidene-11-oxatricyclo/6.2.1.0 $0^{2,7}$ Jundeca-2(7),4-diene-4-carboxylate (10). Same procedure as for the preparation of 9 , but using methyl propynoate ($0.252 \mathrm{~g}, 2.98 \mathrm{mmol}$) instead of butynone. Yield: $0.214 \mathrm{~g}(91 \%)$, colourless crystals, m.p. $115-116^{\circ}$. UV ($\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O} 95: 5$): $226(5800)$. IR (KBr): 3000, 2960, 2900, $1720,1640,1430,1330,1250,1110,1050,970,950,890,850 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): 7.0(\mathrm{~m}, \mathrm{H}-\mathrm{C}(5)) ; 5.3,5.1(2 \mathrm{br} . \mathrm{s}$, $\left.\mathrm{CH}_{2}=\mathrm{C}(9), \mathrm{CH}_{2}=\mathrm{C}(10)\right) ; 5.0(\mathrm{~m}, \mathrm{H}-\mathrm{C}(1), \mathrm{H}-\mathrm{C}(8)) ; 3.8\left(s, \mathrm{CH}_{3} \mathrm{O}\right) ; 3.0$ (br. $\left.m, 2 \mathrm{H}-\mathrm{C}(3), 2 \mathrm{H}-\mathrm{C}(6)\right) . \mathrm{MS}(70 \mathrm{eV})$: 230 (3), 229 (11), 215 (18), 199 (34), 187 (31), 171 (13), 115 (100). Anal. calc. for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{3}$ (230.26): C 73.03, H 6.13; found: C 72.96, H 6.30 .
[10-exo-10-endo-(Epoxymethano)-9-methylidene-I1-oxatricyclo[6.2.1.0 $\left.{ }^{2.7}\right]$ undeca-2(7),4-dien-4-yl] Methyl Ketone (11). A soln. of the monoepoxide 6 of 2,3,5,6-tetramethylidene-7-oxatrinorbornane [9] ($0.16 \mathrm{~g}, 0.99 \mathrm{mmol}$) and 3-butyn-2-one ($0.2 \mathrm{~g}, 2.4 \mathrm{mmol}$) in anh. toluene was stirred at 110° for 8 h . Filtration on silica gel (10 g , AcOEt/petroleum ether 1:1) and solvent removal i.v. gave 11 and its regioisomer (9 -exo, 9 -endo-(epoxymethano)-10-methylidene-11-oxatricyclo[6.2.1.0 ${ }^{2,7}$]undeca-2(7),4-dien-4-yl methyl ketone as minor product. The mixture was chromatographed on silica gel ($16 \mathrm{~g}, \mathrm{AcOEt} /$ petroleum ether $3: 7$). The first fraction contained 11 which was recrystallized from pentane $/ \mathrm{Et}_{2} \mathrm{O}: 0.105 \mathrm{~g}(46 \%)$, colourless needles, m.p. 153-154 . UV ($\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O} 95: 5$): 226 (3600), 254 (sh, 1400). IR (KBr): 3000, 2840, 2810, 1665, 1630, 1390, 1370, 1350, 1230, 1090, 970, 930, 900, 830, 810.

(b)

Fig. 4. Partial experimental (a) and stimulated (b) ${ }^{\prime} H-N M R$ spectra of the cyclohexa-1,4-diene 11 (in $\mathrm{C}_{6} \mathrm{D}_{6}, 360 \mathrm{MHz}$)
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 6.8(\mathrm{~m}, \mathrm{H}-\mathrm{C}(6)) ; 5.05,4.70\left(2 \mathrm{br} . s, \mathrm{CH}_{2}=\mathrm{C}(9)\right) ; 4.95(m, \mathrm{H}-\mathrm{C}(8)) ; 4.4(m, \mathrm{H}-\mathrm{C}(1)) ; 3.5-2.5$ ($m, 2 \mathrm{H}-\mathrm{C}(3), 2 \mathrm{H}-\mathrm{C}(6)) ; 3.02\left(2 d, J_{\mathrm{gem}}=4, \mathrm{CH}_{2}-\mathrm{C}(10)\right) ; 2.3\left(s, \mathrm{CH}_{3} \mathrm{CO}\right)$; attributions confirmed by double-irradiation experiments and LAOCOON IV simulations, see Fig.4. MS (70 eV): $230(3), 229(8), 201$ (35), 187 (86), 173 (18), 169 (51), 147 (75), 128 (38), 115 (100), 91 (60), 77 (44). Anal. calc. for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{2}$ (230.26): C 73.03, H 6.13; found: C 73,06, H 5.93.

The minor adduct was crystallized from the second fraction of the above chromatography: $0.062 \mathrm{~g}(27 \%)$, colourless cubic crystals, m.p. 133-134 . UV ($\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O} 95: 5$): 227 (3600), 254 (sh, 1200). IR (KBr): 3000, 2970, $2880,2810,1665,1630,1370,1350,1320,1230,1150,990,970,940,840,805 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): 6.7(m, \mathrm{H}-\mathrm{C}(5))$; $5.05,4.60\left(2 \mathrm{br}, s, \mathrm{CH}_{2}=\mathrm{C}(10)\right) ; 4.9(m, \mathrm{H}-\mathrm{C}(1)) ; 4.4(m, \mathrm{H}-\mathrm{C}(8)) ; 3.3-2.6\left(m, \mathrm{CH}_{2}(3), \mathrm{CH}_{2}(6)\right) ; 3.0\left(2 d, J_{\mathrm{gem}}=4\right.$, $\left.\mathrm{CH}_{2}-\mathrm{C}(9)\right) ; 2.3\left(s, \mathrm{CH}_{3} \mathrm{CO}\right)$. $\mathrm{MS}(70 \mathrm{eV}): 230(11), 229(7), 201(20), 187(80), 173(18), 169(50), 145(85), 128(69)$, $115(100), 91(70), 77(30)$. Anal. calc. for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{2}$ (230.26): C 73.03, H 6.13; found: C 72.70, H 6.26 .

Methyl 10 -exo,10-endo-(Epoxymethano)-9-methylidene-11-oxatricyclo[6.2.1.0 $0^{2,7}$ Jundeca-2(7),4-diene-4carboxylate (12). A soln. of the monoepoxide $6(0.16 \mathrm{~g}, 0.99 \mathrm{mmol})$ and methyl propynoate ($0.25 \mathrm{~g}, 2.98 \mathrm{mmol}$) in anh. toluene was stirred at 110° for 8 h . After filtration on silica gel ($10 \mathrm{~g}, \mathrm{AcOEt} /$ petroleum ether $1: 1$) and evaporation i.v., the crude 12 (contaminated by $10-20 \%$ of its regioisomer) [8] was purified by 3 recrystallizations from AcOEt/hexane $3: 1(12,8$, and 4 ml$)$ yielding $0.087 \mathrm{~g}(36 \%)$ of colourless crystals, m.p. 128-129 (the mother liquor contained the regioisomer of 12 ; it could not be isolated in a pure form). UV ($\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O} 95: 5$): 222 (3200), 253 (sh, 1800). IR (KBr): 3000, 2960, 2870, 1700, 1680, 1630, 1430, 1330, 1270, 1250, 1110, 1050, 970, 930, 840, 750, 730. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): 6.95(\mathrm{~m}, \mathrm{H}-\mathrm{C}(5)) ; 5.1,4.9\left(2\right.$ br. $\left.s, \mathrm{CH}_{2}=\mathrm{C}(9)\right) ; 5.0(\mathrm{~m}, \mathrm{H}-\mathrm{C}(8)) ; 4.4(\mathrm{~m}, \mathrm{H}-\mathrm{C}(1)) ; 3.8(\mathrm{~s}$, $\mathrm{CH}_{3} \mathrm{O}$); 3.2-2.8 ($m, \mathrm{CH}_{2}(3), \mathrm{CH}_{2}(6)$); $3.05\left(d, J_{\mathrm{gcm}}=4, \mathrm{CH}_{2}-\mathrm{C}(10)\right.$). $\mathrm{MS}(70 \mathrm{eV}): 246$ (3), 243 (3), 231 (14), 215 (25), $203(56), 187(39), 171(15), 135(45), 115(100)$. Anal. calc. for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{4}(264.26): \mathrm{C} 68.28, \mathrm{H} 5.73$; found: C 68.23, H 5.84.

5-endo-5-exo-(Epoxymethano)-6-methylidene-7-oxabicyclo[2.2.1]hept-2-ene (14). A mixture of 5,6-dimeth-ylidene-7-oxabicyclo[2.2.1]hept-2-ene [11] ($13 ; 1.4 \mathrm{~g}, 10 \mathrm{mmol}$), m-chloroperbenzoic acid ($1.9 \mathrm{~g}, 10 \mathrm{mmol}$), and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(14 \mathrm{ml})$ was stirred at 20° for 2 h . The precipitate was filtered off and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$. The org. solns. were united and washed with sat. aq. $\mathrm{Na}_{2} \mathrm{CO}_{3}$ soln. ($30 \mathrm{ml}, 3 \times$), then with $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{ml})$. After drying (MgSO_{4}), N-phenyltriazolinedione (0.7 g) was added portionwise, until persistance of the red colour (elimination of unreacted 13 and epoxydiene 16). After stirring at 0° for 15 h , the precipitate was filtered off and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$. After evaporation, the residue was purified by column chromatography on silica gel ($70-230$ mesh, AcOEt/petroleum ether 2:7) giving 2 fractions. The first fraction contained $180 \mathrm{mg}(15 \%)$ of pure $\mathbf{1 4}$, colourless liquid, b.p. $40^{\circ} / 0.1$ Torr, miscible with all usual solvents. IR $\left(\mathrm{CCl}_{4}\right): 3030,2940,1760,1670,1480,1430,1390,1300$, $1000,950,850 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 6.5\left(d d,{ }^{3} J(\mathrm{H}-\mathrm{C}(1), \mathrm{H}-\mathrm{C}(2))=2,{ }^{3} J(\mathrm{H}-\mathrm{C}(2), \mathrm{H}-\mathrm{C}(3))=5.5, \mathrm{H}-\mathrm{C}(2)\right) ; 6.4$ $\left(d d,{ }^{3} J(\mathrm{H}-\mathrm{C}(3), \mathrm{H}-\mathrm{C}(4))=2,{ }^{3} J(\mathrm{H}-\mathrm{C}(3), \mathrm{H}-\mathrm{C}(2))=5.5, \mathrm{H}-\mathrm{C}(3)\right) ; 5.1$ (br. $\left.s, \mathrm{H}-\mathrm{C}(4)\right) ; 4.95,4.65$ ($2 s$, $\left.\mathrm{CH}_{2}=\mathrm{C}(6)\right) ; 3.1,3.0\left(2 d,{ }^{2} J=4.5, \mathrm{CH}_{2}-\mathrm{C}(5)\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 143.8$ (br, $\left.s, \mathrm{C}(6)\right) ; 137.3\left(d,{ }^{\mathrm{I}} J(\mathrm{C}, \mathrm{H})=178\right.$, $\mathrm{C}(2)) ; 134.5\left(d,{ }^{\prime} J(\mathrm{C}, \mathrm{H})=186, \mathrm{C}(3)\right) ; 103.5\left(t,{ }^{\prime} J(\mathrm{C}, \mathrm{H})=158, \mathrm{CH}_{2}=\mathrm{C}(6)\right) ; 83.2\left(d,{ }^{\prime} J(\mathrm{C}, \mathrm{H})=174, \mathrm{C}(1)\right) ; 79.2(d$, $\left.{ }^{1} J(\mathrm{C}, \mathrm{H})=160, \mathrm{H}-\mathrm{C}(4)\right) ; 62.3$ (br. $\left.s, \mathrm{C}(5)\right) ; 52.7\left(t d,{ }^{1} J(\mathrm{C}, \mathrm{H})=175,{ }^{3} J(\mathrm{C}, \mathrm{H})=5, \mathrm{CH}_{2}\right.$ exo-C(5)). MS (70 eV): 136 $\left(3, M^{+}\right), 135(31), 108(39), 107(47), 79(81), 77(100), 68(47), 51$ (68). Anal. calc. for $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{2}$ (136.15): C 70.59, H 5.88; found: C 70.65, H 5.90.

5-exo,5-endo-(Epoxymethano)-6-methylidene-7-oxabicyclo[2.2.1]hept-2-ene (15). The second fraction of the above chromatography contained $140 \mathrm{mg}(11 \%)$ of pure 15 , colourless liquid, b.p. $60^{\circ} / 0.1$ Torr. $\operatorname{IR}\left(\mathrm{CCl}_{4}\right): 3030$, $2940,2250,1720,1390,1370,1300,1280,1000,900 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 6.5\left(d d,{ }^{3} J(\mathrm{H}-\mathrm{C}(1), \mathrm{H}-\mathrm{C}(2))=2\right.$, $\left.{ }^{3} J(\mathrm{H}-\mathrm{C}(2), \mathrm{H}-\mathrm{C}(3))=5.5, \mathrm{H}-\mathrm{C}(2)\right) ; 6.3\left(d d,{ }^{3} J(\mathrm{H}-\mathrm{C}(3), \mathrm{H}-\mathrm{C}(4))=2,{ }^{3} J(\mathrm{H}-\mathrm{C}(2), \mathrm{H}-\mathrm{C}(3))=5.5, \mathrm{H}-\mathrm{C}(3)\right) ; 5.1$ (br. $s, \mathrm{H}-\mathrm{C}(\mathrm{I})$); $5.0,4.7\left(2 \mathrm{~s}, \mathrm{CH}_{2}=\mathrm{C}(6)\right.$); 4.3 (br. $s, \mathrm{H}-\mathrm{C}(4)$); 2.9 (br. $s, \mathrm{CH}_{2}-\mathrm{C}(5)$). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 142.7$ (br. $s, \mathrm{C}(6)) ; 138.6\left(d,{ }^{1} J(\mathrm{C}, \mathrm{H})=176, \mathrm{C}(2)\right) ; 134.6\left(d,{ }^{1} J(\mathrm{C}, \mathrm{H})=183, \mathrm{C}(3)\right) ; 104.2\left(t,{ }^{1} J(\mathrm{C}, \mathrm{H})=159, \mathrm{CH}_{2}=\mathrm{C}(6)\right) ; 82.7$ $\left(d,{ }^{1} J(\mathrm{C}, \mathrm{H})=168\right)$ and $82.0\left(d,{ }^{1} J(\mathrm{C}, \mathrm{H})=173, \mathrm{H}-\mathrm{C}(1), \mathrm{H}-\mathrm{C}(4)\right) ; 63.37$ (br. $\left.s, \mathrm{C}(5)\right) ; 49.1\left(t,{ }^{1} J(\mathrm{C}, \mathrm{H})=174\right.$, ${ }^{3} J(\mathrm{C}, \mathrm{H})<1, \mathrm{CH}_{2}$ endo $\left.-\mathrm{C}(5)\right)$. MS (70 eV): $136\left(3, \mathrm{M}^{+}\right), 135(19), 108(27), 107(40), 79(92), 77(100), 68(49), 51$ (67). Anal. calc. for $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{2}$ (136.15): C $70.59, \mathrm{H} \mathrm{5.88;} \mathrm{found:} \mathrm{C} 70.50, \mathrm{H} 6.08$.

3-exo-Bromotricyclo[6.2.1.0 $0^{2.7}$]undec-2(7)-ene-4,4,5,5-tetracarbonitrile (23). A soln. of 2-(bromomethyl-idene)- 3-methylidenetrinorbornane ($\mathbf{2 0}$); $0.2 \mathrm{~g}, 1.01 \mathrm{mmol}$; obtained by Br_{2} addition to 2,3-dimethylidene trinorbornane [6] (3) and treatment with t-BuOK in THF and ethylenetetracarbonitrile (TCNE; $0.13 \mathrm{~g}, 1.02 \mathrm{mmol}$) in anh. benzene (2 ml) was stirred at r.t. for 20 min . After evaporation i.v., the mixture was taken up with acetone (1 ml) and purified by column chromatography on silica gel ($18 \mathrm{~g}, \mathrm{AcOEt} /$ petroleum ether $2: 7$) yielding 0.3 g of 22/23. Three recrystallizations from $\mathrm{CHCl}_{3} /$ hexanc $8: 2(7,3$, and 2 ml$)$ yielded $0.038 \mathrm{~g}(12 \%)$ of pure 23, colourless crystals, m.p. 183-184 ${ }^{\circ}$. IR (KBr): 3020, 3000, 2980, 2960, 2880, 2250, 1650, 1450, 1430, 1290, 1280, 1190, 1120, 950, 710, 690. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 5.11(\mathrm{~m}, \mathrm{H}-\mathrm{C}(3)) ; 3.43(\mathrm{~m}$, Hexo-C(6)); $3.10(\mathrm{~m}, \mathrm{H}-\mathrm{C}(1)) ; 3.06(\mathrm{~m}$, Hendo- $\mathrm{C}(6)$); $3.0(\mathrm{~m}, \mathrm{H}-\mathrm{C}(8)) ; 1.98$ ($\mathrm{m}, \mathrm{Hexo}-\mathrm{C}(9)$, Нexo- $\mathrm{C}(10)$); 1.62, $1.31\left(\mathrm{~m}, \mathrm{CH}_{2}(11)\right.$); 1.17 (m ,

Hendo-C(10)); I. 12 (m, Hendo-C(9)); attributions confirmed by NOE measurements. MS (70 eV): 328 (4), 326 (4), $300(9), 298(9), 247$ (37), 220 (100), 193 (12), 142 (5), 91 (6). Anal. calc. for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{BrN}_{4}$ (327.18): C 55.06, H 3.38, N 17.12; found: C 55.09, H 33.30, N 17.19.

3-endo-Methoxytricyclo[6.2.1.0 $\left.{ }^{2,7}\right]$ undec-2(7)-ene-4,4,5,5-tetracarbonitrile (24). A soln. of 2-(methoxymeth-ylidene)-3-methylene trinorbornane (21^{2}) ; $0.15 \mathrm{~g}, 1 \mathrm{mmol}$) and TCNE ($0.13 \mathrm{~g}, 1.02 \mathrm{mmol}$) in anh. benzene (2 ml) was stirred at 20° for 10 min . After evaporation i.v., the residue was dissolved in acetone (1 ml) and purified by column chromatography on silica gel ($20 \mathrm{~g}, \mathrm{AcOEt} / \mathrm{petroleum}$ ether $2: 7$) yielding $0.25 \mathrm{~g}(86 \%)$ of $\mathbf{2 4} / \mathbf{2 5}$. Three recrystallizations from $\mathrm{CHCl}_{3} /$ hexane $3: 2(7,5$, and 1.5 ml$)$ yielded $0.022 \mathrm{~g}(12 \%)$ of pure 24 , colourless needles, m.p. $110-111^{\circ}$. IR (KBr): 3010, 2980, 2960, 2260, 1450, 1440, 1370, 1330, 1290, 1250, 1100, 870, 730. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right): 4.42(\mathrm{~m}, \mathrm{H}-\mathrm{C}(3)) ; 3.83\left(\mathrm{~s}, \mathrm{CH}_{3} \mathrm{O}\right) ; 3.36(\mathrm{dm}$, Hexo $-\mathrm{C}(6)) ; 3.22(\mathrm{~d}, \mathrm{Hendo}-\mathrm{C}(6)) ; 3.19(\mathrm{~m}, \mathrm{H}-\mathrm{C}(1)) ; 3.03$ $(m, \mathrm{H}-\mathrm{C}(8)) ; 2.16\left(m, \mathrm{Hexo}-\mathrm{C}(9)\right.$, Нexo-C(10)); 1.78, $1.71\left(2 m, \mathrm{CH}_{2}(11)\right) ; 1.66,1.61$ (2 m , Hendo-C(9), Hendo-C(10)); attributions confirmed by NOE measurements. MS (70 eV): 278 (3), 251 (4), 150 (80), 122 (100), 121 (75). Anal. calc. for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}$ (278.32): C 69.05, H 5.07, N 20.13 ; found: C $68.91, \mathrm{H} 5.21, \mathrm{~N} 20.20$.

The synthesis and characteristics of 22 and 25 will be described elsewhere. For the syntheses of 26-32: see [5].
11-Oxatricyclo[6.2.1.0 ${ }^{2,7}$ Jundec-2(7)-ene-4-exo,5-exo-dicarboxylic Anhydride (33). A soln. of 2,3-dimeth-ylidene-7-oxatrinorbornane [7] ($4 ; 0.13 \mathrm{~g}, 1.06 \mathrm{mmol}$) and maleic anhydride $(0.125 \mathrm{~g}, 1.28 \mathrm{mmol})$ in anh. toluene was heated to 105° for 3 h . The precipitate was collected by filtration and washed with cold toluene (2 ml). Recrystallization from AcOEt (4.5 ml) yielded $0.19 \mathrm{~g}(83 \%)$ of pure 33, colourless crystals, m.p. 187-188 (the mother liquor showed the presence of $c a .10 \%$ of the 4 -endo, 5 -endo isomer). IR (KBr): 3040, 3000, 2960, 2930, $1870,1790,1450,1440,1320,1240,1230,1205,1070,980,920,680 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 4.88(m, \mathrm{H}-\mathrm{C}(1), \mathrm{H}-\mathrm{C}(8))$; $3.38(m, \mathrm{H}-\mathrm{C}(4), \mathrm{H}-\mathrm{C}(5)) ; 2.81\left(\mathrm{dm}, \mathrm{J}_{\mathrm{gem}}=18\right.$, Нexo-C(3), Нexo-C(6)); $2.41\left(\mathrm{dm}, J_{\mathrm{gem}}=18\right.$, Hendo- $\mathrm{C}(3)$, Hendo-C(6)); $1.83(m$, Hexo-C(9), Hexo-C(10)); 1.14 (m, Hendo- $\mathrm{C}(9)$, Hendo- $\mathrm{C}(10)$). MS (70eV): 220 (4), 193 (6), 192 (56), 164 (65), 147 (5), $120(21), 119$ (100), 118 (9), 117 (7), 92 (12), 91 (52). Anal. calc. for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{4}$ (220.224): C 65.44, H 5.49 ; found: C 65.32 , H 5.49.

9-exo,10-exo-Bis(chloromethyl)-11-oxatricyclo[6.2.1.0 ${ }^{2,7}$ Jundec-2(7)-ene-4-exo,5-exo-dicarboxylic Anhydride (34). Same procedure as for the preparation of 33 starting with 2 -exo, 3 -exo-bis(chloromethyl)- 5,6 -dimeth-ylidene-7-oxatrinorbornane [5]: $0.19 \mathrm{~g}(83 \%)$, colourless crystals, m.p. $186-187^{\circ}$ (the mother liquor contained $c a$. 10% of the 4 -endo,5-endo-isomer). IR (KBr): 3040, 3000, 2960, 2850, 1870, 1790, 1450, 1350, 1320, 1280, 1230, $1220,1185,1065,970,920 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): 4.8(\mathrm{~m}, \mathrm{H}-\mathrm{C}(1), \mathrm{H}-\mathrm{C}(8)) ; 3.7,3.5\left(2 \mathrm{~m}, 2 \mathrm{CH}_{2} \mathrm{Cl}\right) ; 3.4(\mathrm{~m}, \mathrm{H}-\mathrm{C}(4)$, $\mathrm{H}-\mathrm{C}(5)$); 2.9 (m , Hexo- $\mathrm{C}(3)$, Hexo- $\mathrm{C}(6)$); $2.5(\mathrm{~m}$, Hendo- $\mathrm{C}(3)$, Hendo- $\mathrm{C}(6)) ; 2.1(\mathrm{~m}, \mathrm{H}-\mathrm{C}(9), \mathrm{H}-\mathrm{C}(10)$). MS (70 eV): $283(0.3), 281(1), 245(6), 192(35), 164(100), 119(86), 91(53)$. Anal. calc. for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{O}_{4}$ (317.168): C 53.01, H 4.45; found: C 52.85, H 4.48.

3-Chlorocyclohex-4-ene-1,1,2,2-tetracarbonitrile. TCNE $(0.13 \mathrm{~g}, 1 \mathrm{mmol})$ was dissolved in 1-chlorobutadiene ($5 \mathrm{ml}, 56.5 \mathrm{mmol}$) and heated under reflux. After 8 h at 80°, the chlorobutadiene in excess was removed by distillation i.v. The residue was dissolved in acetone (1 ml) and purified by column chromatography on silica gel (15 g , $\mathrm{AcOEt} /$ petroleum ether $2: 7$) and recrystallization from $\mathrm{CHCl}_{3} /$ hexane $3: 2(9 \mathrm{ml}): 0.174 \mathrm{~g}(80 \%)$, colourless crystals, m.p. $151-152^{\circ}$. IR (KBr): $3100,3080,2260,1660,1440,1260,1240,1210,875,800,790,650 .{ }^{1} \mathrm{H}-\mathrm{NMR}$: Fig. 2, Table 2. MS (70 eV): 218 (1), 216 (3), 181 (10), 154 (23), 140 (13), 138 (40), 103 (8), 91 (33), 89 (100). Anal. calc. for $\mathrm{C}_{10} \mathrm{H}_{5} \mathrm{ClN}_{4}$ (216.63): C 55.44, H 2.33; found: C 55.68, H 2.49.

REFERENCES

[1] P.-A. Carrupt, P. Vogel, Tetrahedron Lett. 1979, $20,4533$.
[2] Y. Bessière, P. Vogel, Helv. Chim. Acta 1980, 63, 232.
[3] J. Tamariz, P. Vogel, Helv. Chim. Acta 1981, 64, 188.
[4] J. Tamariz, L. Schwager, J. H. A. Stibbard, P. Vogel, Tetrahedron Lett. 1983, 24, 1497; J. Tamariz, P. Vogel, Tetrahedron 1984, 40, 4549; Angew. Chem. Int. Ed. 1984, 23, 74.
[5] C. Mahaim, P. Vogel, Helv. Chim. Acta 1982, 65, 866.
[6] D. N. Butter, R. A. Snow, Can. J. Chem. 1972, 50, 795; R. B. King, F. G. A. Stone, J. Am. Chem. Soc. 1961, 83 , 3590.
[7] M. A.P. Bowe, R. G. J. Miller, J. B. Rose, D. G. M. Wood, J. Chem. Soc. 1960, 1541.
[8] C. Mahaim, P. A. Carrupt, J.-P. Hagenbuch, A. Florey, P. Vogel, Helv. Chim. Acta 1980, 63, 1149.
[9] C. Mahaim, L. Schwager, P.-A. Carrupt, P. Vogel, Tetrahedron Lett. 1983, 24, 3603.
[10] A. Chollet, J.-P. Hagenbuch, P. Vogel, Helv. Chim. Acta 1979, 62, 511 ; see also: T. Spoormaker, M. J. A. de Bie, Recl. Trav. Chim. Pays-Bas 1979, 98, 59, 380; P. E. Hansen, Progr. NMR Spectrosc. 1981, 14, 175.
[11] W. R. Roth, H. Humbert, G. Wegener, G. Erker, W. D. Exner, Chem. Ber. 1975, 108, 1655.
[12] R.C. Cookson, T.A. Crabb, J. J. Frankel, J. Hudec, Tetrahedron 1966, Suppl. 7, 355.
[13] a) M. Barfield, S. J. Sternhell, J. Am. Chem. Soc. 1972, 94, 1905; b) J. A. Pople, D. L. Beveridge, P. A. Dobosh, J. Chem. Phys. 1968, 49, 2960; c) J. Kowalewski, Progr. NMR Spectrosc. 1978, 9, 1.
[14] M. Barfield, J. Spear, S. Sternhell, J. Am. Chem. Soc. 1975, 97, 5160.
[15] M. Barfield, A. A. Abia, Org. Magn. Reson. 1980, 14, 404.
[16] T. Schaeffer, H.D. Gesser, J.B. Rowbotham, Can. J. Chem. 1976, 54, 2235.
[17] P. W. Rabideau, Acc. Chem. Res. 1978, II, 141; P. W. Rabideau, J. W. Paschal, J. L. Marshall, J. Chem. Soc., Perkin Trans. 2 1977, 842; M.C. Grossel, M. J. Perkins, ibid. 1975, 1544; K. P. Lipkowitz, P. W. Rabideau, D. J. Raber, L. E. Hardee, P. v. R. Schleyer, A.J. Kos, R. A. Kahn, J. Org. Chem. 1982, 47, 1002.
[18] a) P. W. Rabideau, E. G. Burkholder, M.J. Yates, J. W. Paschal, J. Am Chem. Soc. 1977, 99, 3596; J. L. Marshall, L. G. Faehl, C. R. McDaniel, Jr., N. D. Ledford, ibid. 1977, 99, 321; b) M. J. Bennett, J. T. Purdham, Can. J. Chem. 1978, 56, 1358; M. C. Grossel, A. K. Cheetham, J. M. Newsam, Tetrahedron Lett. 1978, 5229.
[19] E. W. Garbisch, Jr., J. Am. Chem. Soc. 1964, 86, 5561.
[20] M.C. Grossel, R. C. Hayward, J. Chem. Soc., Perkin Trans 2 1976, 851 ; see also: Ph. Vioget, M. Bonivento, R. Roulet, P. Vogel, Helv. Chim. Acta 1984, 67, 1630.
[21] M. Barfield, M. Karplus, J. Am. Chem. Soc. 1969, 91, 1.
[22] A.A. Pinkerton, D. Schwarzenbach, J. H. A. Stibbard, P.-A. Carrupt, P. Vogel, J. Am. Chem. Soc. 1981, 103, 2095; A. A. Pinkerton, D. Schwarzenbach, J.-L. Birbaum, P.-A. Carrupt, L. Schwager, P. Vogel, Helv. Chim. Acta 1984, 67, 1136.
[23] W.H. Watson, J. Galloy, P. D. Bartlett, A. A. M. Roof, J. Am. Chem. Soc. 1981, 103, 2022.
[24] L. A. Paquette, R. V. C. Carr, M. C. Böhm, R. Gleiter, J. Am. Chem. Soc. 1980, 102. 1186; L. A. Paquette, P. Charumilind, M.C. Böhm, R. Gleiter, L. S. Bass, J. Clardy, ihid. 1983, 105, 3136 and ref. cit. therein; F. K. Brown, K. N. Houk, Tetrahedron Lett. 1984, 25, 4609.
[25] M. Barfield, A. M. Dean, C. J. Fallick, R. J. Spear, S. Sternhell, P. W. Westerman, J. Am. Chem. Soc. 1975, 97, 1482; S. Sternhell, Quart. Rev. Chem. Soc. 1963, 236; M. Barfield, B. Charkabarti, Chem. Rev. 1969, 69, 757.
[26] CNINDO/74 QCPE program, No. 281.
[27] M. J.S. Dewar, W. Thiel, J. Am. Chem. Soc. 1977, 99, 4899.
[28] G. Wipff, K. Morokuma, Chem. Phys. Lett. 1980, 74.400; Tetrahedron Lett. 1980, 21, 4466; P.-A. Carrupt, P. Vogel, J, Mol. Struct. Theochem. 1985, 124, 9 and ref. cit. therein.
[29] J.-M. Tornare, P. Vogel, A. A. Pinkerton, D. Schwarzenbach, Helv. Chim. Acta 1985, 68, 2195.
[30] M. Avenati, P.-A. Carrupt, D. Quarroz, P. Vogel, Helv. Chim. Acta 1982, 65, 188.

[^0]: $\left.{ }^{1}\right)$ Present address: Research Department, Sandoz $A G$, Basel.

[^1]: ${ }^{2}$) The synthesis of the new dienes 20 and 21 and their Diels-Alder stereo-selectivity will be reported elsewhere. Preliminary studies suggest an exo-face selectivity for the addition of TCNE, in contrast with endo-face selectivity usually observed for 4,7-methano-4,5,6,7-tetrahydro-2H-indene and derivatives [24].

